随着“十四五”规划等国家政策的深化落地,人工智能(AI)发展迎来又一轮红利,特别是以ChatGPT为代表的生成AI产品预示着AI商业变现过程将进一步提速,AI工程化热度进一步提升。人工智能研发运营体系(MLOps)作为AI工程化重要组成部分,呈现出方法论逐渐成熟、落地应用持续推进的态势。
2023年3月16日,“AI工程化论坛暨MLOps实践指南发布会”在京举办。会上,中国信息通信研究院(简称”中国信通院“)发布《人工智能研发运营体系(MLOps)实践指南(2023年)》。指南从组织如何布局和落地MLOps的角度出发,以模型的高质量、可持续交付作为核心逻辑,系统性梳理MLOps概念内涵、发展过程、落地挑战,为组织高效构建MLOps框架体系和关键能力提供方法论和实践案例的参考与借鉴,并研判MLOps未来发展趋势。
一、MLOps概念渐晰,为解决AI生产过程管理问题意义明显。MLOps是通过构建和运行机器学习流水线(Pipeline),统一机器学习(ML)项目研发(Dev)和运营(Ops)过程的一种方法,目的是为了提高AI模型生产质效,推动AI从满足基本需求的“能用”变为满足高效率、高性能的“好用”,有效化解模型全链路生命周期管理存在问题,包括跨团队协作难度大、过程和资产管理欠缺、生产和交付周期长等。
二、国内外MLOps发展百花齐放,落地仍面临问题和挑战。2015年至今,从业界意识到机器学习项目技术债给AI生产上线带来的潜在巨大影响伊始,MLOps前后经历了斟酌发酵、概念明确、落地应用三大阶段,且随着新工具不断涌现,在IT、金融、电信等行业得到了广泛应用和落地。但在这个渐进式发展过程中,MLOps落地面临着诸多挑战,包括组织落地驱动力不足、支撑工具选型难集成难、模型治理和可信道阻且长、环境间的交互难以平衡等。
三、围绕流水线的构建,MLOps框架体系逐步完善。基于机器学习项目全生命周期,以CI/CD/CT/CM为核心,通过构建各条机器学习流水线,包含需求分析与开发、数据工程流水线、模型实验工程流水线、持续集成流水线、模型训练流水线、模型服务流水线、持续监控流水线,MLOps全生命周期闭环框架逐步完善。
四、渐进式建设关键能力,MLOps落地效应逐步形成。通过数据处理、模型训练、构建继承、模型服务、运营监控、模型重训、实验管理和流水线管理等能力的建设,形成MLOps过程管理能力的全面把控。通过特征管理、模型管理和仓库管理等能力的建设,形成制品管理能力的提升。同时以模型安全作为AI生产过程中的关键保障之一,MLOps落地效应日益凸显。
中嘉和信作为深耕IDC行业十余年的数据中心服务商,致力于成为行业领先的数字化业务连续性保障服务提供商。业务覆盖金融机构、银行保险、人工智能、电商零售、交通运输、生产制造、能源化工、地产建安、生活服务等多个行业。中嘉和信为客户提供数据中心规划建设、数据中心托管运营、公有云、私有云、混合云、DCI全球组网、云网融合、信创集成服务、安全集成服务等定制化解决方案,依托经验丰富的专业技术服务团队和先进的运维服务管理体系,持续为各行业客户提供一站式数字化业务连续性保障服务,陪伴客户共同成长,助力客户实现梦想。如有业务需求请拨打010-51265666进行咨询,欢迎预约参观机房!
文章来源:互联网,如有侵权联系删除!